17,277 research outputs found

    Numerical Analysis of the Capacities for Two-Qubit Unitary Operations

    Get PDF
    We present numerical results on the capacities of two-qubit unitary operations for creating entanglement and increasing the Holevo information of an ensemble. In all cases tested, the maximum values calculated for the capacities based on the Holevo information are close to the capacities based on the entanglement. This indicates that the capacities based on the Holevo information, which are very difficult to calculate, may be estimated from the capacities based upon the entanglement, which are relatively straightforward to calculate.Comment: 9 pages, 10 figure

    A temperature-dependent phase-field model for phase separation and damage

    Get PDF
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [C. Heinemann, C. Kraus: Existence results of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21 (2011), 321--359] and [C. Heinemann, C. Kraus: Existence results for diffuse interface models describing phase separation and damage. European J. Appl. Math. 24 (2013), 179--211]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in [E. Feireisl: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007), 461--490] in the framework of Fourier-Navier-Stokes systems and then recently employed in [E. Feireisl, H. Petzeltov\'a, E. Rocca: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009), 1345--1369], [E. Rocca, R. Rossi: "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal., 47 (2015), 2519--2586] for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme

    On Nonperturbative Exactness of Konishi Anomaly and the Dijkgraaf-Vafa Conjecture

    Full text link
    In this paper we study the nonperturbative corrections to the generalized Konishi anomaly that come from the strong coupling dynamics of the gauge theory. We consider U(N) gauge theory with adjoint and Sp(N) or SO(N) gauge theory with symmetric or antisymmetric tensor. We study the algebra of chiral rotations of the matter field and show that it does not receive nonperturbative corrections. The algebra implies Wess-Zumino consistency conditions for the generalized Konishi anomaly which are used to show that the anomaly does not receive nonperturbative corrections for superpotentials of degree less than 2l+1 where 2l=3c(Adj)-c(R) is the one-loop beta function coefficient. The superpotentials of higher degree can be nonperturbatively renormalized because of the ambiguities in the UV completion of the gauge theory. We discuss the implications for the Dijkgraaf-Vafa conjecture.Comment: 23 page

    Transformations among Pure Multipartite Entangled States via Local Operations Are Almost Never Possible

    Get PDF
    Local operations assisted by classical communication (LOCC) constitute the free operations in entanglement theory. Hence, the determination of LOCC transformations is crucial for the understanding of entanglement. We characterize here almost all LOCC transformations among pure multipartite multilevel states. Combined with the analogous results for qubit states shown by Gour \emph{et al.} [J. Math. Phys. 58, 092204 (2017)], this gives a characterization of almost all local transformations among multipartite pure states. We show that nontrivial LOCC transformations among generic, fully entangled, pure states are almost never possible. Thus, almost all multipartite states are isolated. They can neither be deterministically obtained from local-unitary-inequivalent (LU-inequivalent) states via local operations, nor can they be deterministically transformed to pure, fully entangled LU-inequivalent states. In order to derive this result, we prove a more general statement, namely, that, generically, a state possesses no nontrivial local symmetry. We discuss further consequences of this result for the characterization of optimal, probabilistic single copy and probabilistic multi-copy LOCC transformations and the characterization of LU-equivalence classes of multipartite pure states.Comment: 13 pages main text + 10 pages appendix, 1 figure; close to published versio

    Estado actual de la etiologĂ­a de los tumores malignos

    Get PDF

    Forming efficient agent groups for completing complex tasks

    No full text
    In this paper we produce complexity and impossibility results and develop algorithms for a task allocation problem that needs to be solved by a group of autonomous agents working together. In particular, each task is assumed to be composed of several subtasks and involves an associated predetermined and known overall payment (set by the task’s owner) for its completion. However, the division of this payment among the corresponding contributors is not predefined. Now to accomplish a particular task, all its subtasks need to be allocated to agents with the necessary capabilities and the agents’ corresponding costs need to fall within the preset overall task payment. For this scenario, we first provide a cooperative agent system designer with a practical solution that achieves an efficient allocation. However, this solution is not applicable for non-cooperative settings. Consequently, we go on to provide a detailed analysis where we prove that certain design goals cannot be achieved if the agents are self interested. Specifically, we prove that for the general case, no protocol achieving the efficient solution can exist that is individually rational and budget balanced. We show that although efficient protocols may exist in some settings, these will inevitably be setting-specific

    Phase boundaries in deterministic dense coding

    Full text link
    We consider dense coding with partially entangled states on bipartite systems of dimension d×dd\times d, studying the conditions under which a given number of messages, NN, can be deterministically transmitted. It is known that the largest Schmidt coefficient, λ0\lambda_0, must obey the bound λ0≀d/N\lambda_0\le d/N, and considerable empirical evidence points to the conclusion that there exist states satisfying λ0=d/N\lambda_0=d/N for every dd and NN except the special cases N=d+1N=d+1 and N=d2−1N=d^2-1. We provide additional conditions under which this bound cannot be reached -- that is, when it must be that λ0<d/N\lambda_0<d/N -- yielding insight into the shapes of boundaries separating entangled states that allow NN messages from those that allow only N−1N-1. We also show that these conclusions hold no matter what operations are used for the encoding, and in so doing, identify circumstances under which unitary encoding is strictly better than non-unitary.Comment: 7 pages, 1 figur

    Non-Bilocal Measurement via Entangled State

    Full text link
    Two observers, who share a pair of particles in an entangled mixed state, can use it to perform some non-bilocal measurement over another bipartite system. In particular, one can construct a specific game played by the observers against a coordinator, in which they can score better than a pair of observers who only share a classical communication channel.Comment: 6 pages. minor change

    Particle production in p-p collisions at sqrt(s) = 17 GeV within the statistical model

    Full text link
    A thermal-model analysis of particle production of p-p collisions at sqrt(s) = 17 GeV using the latest available data is presented. The sensitivity of model parameters on data selections and model assumptions is studied. The system-size dependence of thermal parameters and recent differences in the statistical model analysis of p-p collisions at the super proton synchrotron (SPS) are discussed. It is shown that the temperature and strangeness undersaturation factor depend strongly on kaon yields which at present are still not well known experimentally. It is conclude, that within the presently available data at the SPS it is rather unlikely that the temperature in p-p collisions exceeds significantly that expected in central collisions of heavy ions at the same energy.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
    • 

    corecore